Persistent Approximation Property for C*-algebras with propagation

(jointwork with G. Yu)

H. Oyono Oyono

June 17, 2013

Special Week on Operator Algebras, June 17–21, 2013, Research Center for Operator Algebras, East China Normal University.

• Let X be a proper metric space (i.e closed balls are compact) and let $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ be a representation of $C_0(X)$ on a Hilbert space \mathcal{H} .

2/26

- Let X be a proper metric space (i.e closed balls are compact) and let $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ be a representation of $C_0(X)$ on a Hilbert space \mathcal{H} .
- Example : $\mathcal{H} = L^2(\mu, X)$ for μ Borelian measure on X and π the pointwise multiplication.

- Let X be a proper metric space (i.e closed balls are compact) and let $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ be a representation of $C_0(X)$ on a Hilbert space \mathcal{H} .
- Example : $\mathcal{H} = L^2(\mu, X)$ for μ Borelian measure on X and π the pointwise multiplication.

Definition

• If T is an operator of $\mathcal{L}(\mathcal{H})$, then Supp T is the complementary of the open subset of $X \times X$

$$\{(x,y) \in X \times X \text{ such that } \exists f \text{ and } g \in C_c(X) \text{ such that } f(x) \neq 0, g(y) \neq 0 \text{ and } \pi(f) \cdot T \cdot \pi(g) = 0\}$$

- Let X be a proper metric space (i.e closed balls are compact) and let $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ be a representation of $C_0(X)$ on a Hilbert space \mathcal{H} .
- Example : $\mathcal{H} = L^2(\mu, X)$ for μ Borelian measure on X and π the pointwise multiplication.

Definition

• If T is an operator of $\mathcal{L}(\mathcal{H})$, then Supp T is the complementary of the open subset of $X \times X$

$$\{(x,y) \in X \times X \text{ such that } \exists f \text{ and } g \in C_c(X) \text{ such that } f(x) \neq 0, g(y) \neq 0 \text{ and } \pi(f) \cdot T \cdot \pi(g) = 0\}$$

• T has propagation less than r if $d(x, y) \le r$ for all (x, y) in Supp T.

• Let *D* be an elliptic differential operator on a compact manifold *M*.

- Let *D* be an elliptic differential operator on a compact manifold *M*.
- Let *Q* be a parametrix for *D*.

- Let D be an elliptic differential operator on a compact manifold M.
- Let Q be a parametrix for D.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$:

- Let D be an elliptic differential operator on a compact manifold M.
- Let Q be a parametrix for D.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$:

0

H. Oyono Oyono (Université de Lorraine)

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \ S_1D & Id - S_1^2 \end{pmatrix}$$

is an idempotent and we can choose Q such that P_D has arbitrary small propagation.

- Let D be an elliptic differential operator on a compact manifold M.
- Let Q be a parametrix for D.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$:

0

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \ S_1D & Id - S_1^2 \end{pmatrix}$$

is an idempotent and we can choose Q such that P_D has arbitrary small propagation.

D is a Fredholm operator and

$$\operatorname{Ind} D=[P]-\left[\begin{pmatrix}0&0\\0&Id\end{pmatrix}\right]\in K_0(\mathcal{K}(L^2(M))\cong\mathbb{Z}.$$

- Let D be an elliptic differential operator on a compact manifold M.
- Let Q be a parametrix for D.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$:

0

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \ S_1D & Id - S_1^2 \end{pmatrix}$$

is an idempotent and we can choose Q such that P_D has arbitrary small propagation.

D is a Fredholm operator and

$$\operatorname{Ind} D=[P]-\left[\begin{pmatrix}0&0\\0&\operatorname{Id}\end{pmatrix}\right]\in K_0(\mathcal{K}(L^2(M))\cong\mathbb{Z}.$$

• How can we keep track of the propagation and have homotopy invariance?

Definition (Quasi-projection)

If X be a proper metric space and $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ is a representation of $C_0(X)$ on a Hilbert space \mathcal{H} , let $0 < \varepsilon < 1/4$ (control) and r > 0 (propagation). Then q in $\mathcal{L}(\mathcal{H})$ is an ε -r-projection if $q = q^*$, $||q^2 - q|| < \varepsilon$ and q has propagation less than r.

Persistent Approximation Property

4 / 26

Definition (Quasi-projection)

If X be a proper metric space and $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ is a representation of $C_0(X)$ on a Hilbert space \mathcal{H} , let $0 < \varepsilon < 1/4$ (control) and r > 0 (propagation). Then q in $\mathcal{L}(\mathcal{H})$ is an ε -r-projection if $q = q^*$, $||q^2 - q|| < \varepsilon$ and q has propagation less than r.

• If q is an ε -r-projection, then its spectrum has a gap around 1/2.

Definition (Quasi-projection)

If X be a proper metric space and $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ is a representation of $C_0(X)$ on a Hilbert space \mathcal{H} , let $0 < \varepsilon < 1/4$ (control) and r > 0 (propagation). Then q in $\mathcal{L}(\mathcal{H})$ is an ε -r-projection if $q = q^*$, $||q^2 - q|| < \varepsilon$ and q has propagation less than r.

- If q is an ε -r-projection, then its spectrum has a gap around 1/2.
- Hence there exists $\kappa : \operatorname{Sp} q \to \{0, 1\}$ continuous and such that $\kappa(t) = 0$ if t < 1/2 and $\kappa(t) = 1$ if t > 1/2.

Definition (Quasi-projection)

If X be a proper metric space and $\pi: C_0(X) \to \mathcal{L}(\mathcal{H})$ is a representation of $C_0(X)$ on a Hilbert space \mathcal{H} , let $0 < \varepsilon < 1/4$ (control) and r > 0 (propagation). Then q in $\mathcal{L}(\mathcal{H})$ is an ε -r-projection if $q = q^*$, $||q^2 - q|| < \varepsilon$ and q has propagation less than r.

- If q is an ε -r-projection, then its spectrum has a gap around 1/2.
- Hence there exists $\kappa : \operatorname{Sp} q \to \{0, 1\}$ continuous and such that $\kappa(t) = 0$ if t < 1/2 and $\kappa(t) = 1$ if t > 1/2.
- By continuous functional calculus, $\kappa(q)$ is a projection such that $||\kappa(q) q|| < 2\varepsilon$;

Quasi-projections and indices

• Let D be a differential elliptic operator on a manifold, let Q be a parametrix. Set $S_0 := Id - QD$ and $S_1 := Id - DQ$ and

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \\ S_1D & Id - S_1^2 \end{pmatrix}.$$

Quasi-projections and indices

• Let D be a differential elliptic operator on a manifold, let Q be a parametrix. Set $S_0 := Id - QD$ and $S_1 := Id - DQ$ and

$$P_D=egin{pmatrix} S_0^2 & S_0(Id+S_0)Q \ S_1D & Id-{S_1}^2 \end{pmatrix}$$
 . Then

$$((2P_D^*-1)(2P_D-1)+1)^{1/2}P_D((2P_D^*-1)(2P_D-1)+1)^{-1/2}$$

is a projection conjugated to the idempotent P_D ;

Quasi-projections and indices

• Let D be a differential elliptic operator on a manifold, let Q be a parametrix. Set $S_0 := Id - QD$ and $S_1 := Id - DQ$ and

$$P_D = egin{pmatrix} {S_0}^2 & {S_0}(Id + {S_0})Q \ {S_1}D & Id - {S_1}^2 \end{pmatrix}$$
 . Then

$$((2P_D^*-1)(2P_D-1)+1)^{1/2}P_D((2P_D^*-1)(2P_D-1)+1)^{-1/2}$$

is a projection conjugated to the idempotent P_D ;

• Choosing $Q = Q_{\varepsilon,r}$ with propagation small enought and approximating

 $((2P_D^*-1)(2P_D-1)+1)^{1/2}P_D((2P_D^*-1)(2P_D-1)+1)^{-1/2}$ using a power serie, we can for all $0<\varepsilon<1/4$ and r>0, construct a ε -r-projection $q_D^{\varepsilon,r}$ such that

$$\operatorname{Ind} D = \left[\kappa(q_D^{\varepsilon,r})\right] - \left[\begin{pmatrix} 0 & 0 \\ 0 & Id \end{pmatrix}\right]$$

in $K_0(\mathcal{K}(L^2(M)) \cong \mathbb{Z}$.

The framework: Filtered algebras

Definition

A filtered C^* -algebra A is a C^* -algebra equipped with a family $(A_r)_{r>0}$ of linear subspaces:

- $A_r \subset A_{r'}$ if $r \leqslant r'$;
- \bullet A_r is closed under involution;
- \bullet $A_r \cdot A_{r'} \subset A_{r+r'}$;
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.

The framework: Filtered algebras

Definition

A filtered C^* -algebra A is a C^* -algebra equipped with a family $(A_r)_{r>0}$ of linear subspaces:

- $A_r \subset A_{r'}$ if $r \leqslant r'$;
- A_r is closed under involution;
- \bullet $A_r \cdot A_{r'} \subset A_{r+r'}$;
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.
- If A is unital, we also require that the identity 1 is an element of A_r for every positive number r.

The framework: Filtered algebras

Definition

A filtered C^* -algebra A is a C^* -algebra equipped with a family $(A_r)_{r>0}$ of linear subspaces:

- $A_r \subset A_{r'}$ if $r \leqslant r'$;
- \bullet A_r is closed under involution;
- \bullet $A_r \cdot A_{r'} \subset A_{r+r'}$;
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.
- If A is unital, we also require that the identity 1 is an element of A_r for every positive number r.
- The elements of A_r are said to have propagation less than r.

• $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X.

H. Oyono Oyono (Université de Lorraine)

• $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra

- $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra
- Roe algebras:
 - ightharpoonup proper discrete metric space, $\mathcal H$ separable Hilbert space

- $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra
- Roe algebras:
 - \triangleright Σ proper discrete metric space, \mathcal{H} separable Hilbert space
 - ► $C[\Sigma]_r$: space of locally compact operators on $\ell^2(\Sigma) \otimes \mathcal{H}$ (i.e T satisfies fT and Tf compact for all $f \in C_c(\Sigma)$) and with propagation less than r.

7 / 26

- $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra
- Roe algebras:
 - ightharpoonup proper discrete metric space, \mathcal{H} separable Hilbert space
 - ► $C[\Sigma]_r$: space of locally compact operators on $\ell^2(\Sigma) \otimes \mathcal{H}$ (i.e T satisfies fT and Tf compact for all $f \in C_c(\Sigma)$) and with propagation less than r.
 - The Roe algebra of Σ is $C^*(\Sigma) = \overline{\bigcup_{r>0} C[\Sigma]_r} \subset \mathcal{L}(\ell^2(\Sigma) \otimes \mathcal{H})$ (filtered by $(C[\Sigma]_r)_{r>0}$).

June 17, 2013

- $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra
- Roe algebras:
 - ightharpoonup proper discrete metric space, \mathcal{H} separable Hilbert space
 - ▶ $C[\Sigma]_r$: space of locally compact operators on $\ell^2(\Sigma) \otimes \mathcal{H}$ (i.e T satisfies fT and Tf compact for all $f \in C_c(\Sigma)$) and with propagation less than r.
 - ► The Roe algebra of Σ is $C^*(\Sigma) = \overline{\bigcup_{r>0} C[\Sigma]_r} \subset \mathcal{L}(\ell^2(\Sigma) \otimes \mathcal{H})$ (filtered by $(C[\Sigma]_r)_{r>0}$).
- C*-algebras of groups and cross-products:
 - If Γ is a discrete finitely generated group equipped with a word metric. Set

$$\mathbb{C}[\Gamma]_r = \{x \in \mathbb{C}[\Gamma] \text{ with support in } B(e,r)\}.$$

Then $C^*_{red}(\Gamma)$ and $C^*_{max}(\Gamma)$ are filtered by $(\mathbb{C}[\Gamma]_r)_{r>0}$.

- $\mathcal{K}(L^2(X,\mu))$ for X a metric space and μ probability measure on X. More generally $A \otimes \mathcal{K}(L^2(X,\mu))$ for A is a C^* -algebra
- Roe algebras:
 - ightharpoonup proper discrete metric space, \mathcal{H} separable Hilbert space
 - ▶ $C[\Sigma]_r$: space of locally compact operators on $\ell^2(\Sigma) \otimes \mathcal{H}$ (i.e T satisfies fT and Tf compact for all $f \in C_c(\Sigma)$) and with propagation less than r.
 - ► The Roe algebra of Σ is $C^*(\Sigma) = \overline{\bigcup_{r>0} C[\Sigma]_r} \subset \mathcal{L}(\ell^2(\Sigma) \otimes \mathcal{H})$ (filtered by $(C[\Sigma]_r)_{r>0}$).
- C*-algebras of groups and cross-products:
 - If Γ is a discrete finitely generated group equipped with a word metric. Set

$$\mathbb{C}[\Gamma]_r = \{x \in \mathbb{C}[\Gamma] \text{ with support in } B(e,r)\}.$$

Then $C^*_{red}(\Gamma)$ and $C^*_{max}(\Gamma)$ are filtered by $(\mathbb{C}[\Gamma]_r)_{r>0}$.

▶ More generally, if Γ acts on a A by automorphisms, then $A \rtimes_{red} \Gamma$ and $A \rtimes_{max} \Gamma$ are filtered C^* -algebras.

Let $A = (A_r)_{r>0}$ be a unital filtered C^* -algebra, r>0 (propagation) and $0 < \varepsilon < 1/4$ (control):

• $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $\|p^2 - p\| < \varepsilon$.

8 / 26

- $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- $u \in A_r$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.

- $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- $u \in A_r$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.
- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.

- $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- $u \in A_r$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.
- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.
- an ε -r projection p gives rise to a projection $\kappa(p)$ by functional calculus.

- $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- $u \in A_r$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $\|\mathbf{u}\cdot\mathbf{u}^*-\mathbf{1}\|<\varepsilon$.
- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.
- an ε -r projection p gives rise to a projection $\kappa(p)$ by functional calculus.
- \bullet $\bigcup_{\varepsilon,r}(A)$ is the set of ε -r-unitaries of A.

- $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- $u \in A_r$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.
- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.
- an ε -r projection p gives rise to a projection $\kappa(p)$ by functional calculus.
- $U^{\varepsilon,r}(A)$ is the set of ε -r-unitaries of A.
- $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ for $\mathsf{P}^{\varepsilon,r}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,r}(M_{n+1}(A)); x \mapsto \mathsf{diag}(x,0).$

- $p \in A_r$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- $u \in A_r$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.
- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.
- an ε -r projection p gives rise to a projection $\kappa(p)$ by functional calculus.
- $U^{\varepsilon,r}(A)$ is the set of ε -r-unitaries of A.
- $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ for $\mathsf{P}^{\varepsilon,r}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,r}(M_{n+1}(A)); x \mapsto \mathsf{diag}(x,0).$
- $U_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,r}(M_n(A))$ for $U^{\varepsilon,r}(M_n(A)) \hookrightarrow U^{\varepsilon,r}(M_{n+1}(A))$; $x \mapsto \text{diag}(x,1)$.

Quantitative K-(semi)-groups

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$)

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

• $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P_{\infty}^{\varepsilon, r}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}_{\infty}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.
- $u \sim v$ if there exists $h \in U_{\infty}^{\varepsilon,r}(C([0,1],A) \text{ s.t } h(0) = u \text{ and } h(1) = v.$

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}_{\infty}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.
- $u \sim v$ if there exists $h \in U_{\infty}^{\varepsilon,r}(C([0,1],A) \text{ s.t } h(0) = u \text{ and } h(1) = v.$

- $lackbox{0} \ K_0^{\varepsilon,r}(A) = \mathsf{P}^{\varepsilon,r}(A)/\sim and [p,l]_{\varepsilon,r} \ is \ the \ class \ of \ (p,l) \ mod. \sim;$
- ② $K_1^{\varepsilon,r}(A) = U^{\varepsilon,r}(A)/\sim and [u]_{\varepsilon,r}$ is the class of u mod. \sim .

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}^{\varepsilon,r}_{\infty}(A) \times \mathbb{N}$ and $\mathsf{U}^{\varepsilon,r}_{\infty}(A)$ (recall that $\mathsf{P}^{\varepsilon,r}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}^{\varepsilon,r}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.
- $u \sim v$ if there exists $h \in U^{\varepsilon,r}_{\infty}(C([0,1],A) \text{ s.t } h(0) = u \text{ and } h(1) = v.$

- $lackbox{0} \ K_0^{\varepsilon,r}(A) = \mathsf{P}^{\varepsilon,r}(A)/\sim and [p,l]_{\varepsilon,r} \ is \ the \ class \ of \ (p,l) \ mod. \ \sim;$
- ② $K_1^{\varepsilon,r}(A) = U^{\varepsilon,r}(A)/\sim and [u]_{\varepsilon,r}$ is the class of u mod. \sim .
 - $K_0^{\varepsilon,r}(A)$ is an abelian group for $[p, l]_{\varepsilon,r} + [p', l']_{\varepsilon,r} = [\operatorname{diag}(p, p'), l + l']_{\varepsilon,r};$

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}_{\infty}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.
- $u \sim v$ if there exists $h \in U_{\infty}^{\varepsilon,r}(C([0,1],A) \text{ s.t } h(0) = u \text{ and } h(1) = v.$

- $lackbox{0} \ K_0^{\varepsilon,r}(A) = \mathsf{P}^{\varepsilon,r}(A)/\sim and [p,l]_{\varepsilon,r} \ is \ the \ class \ of \ (p,l) \ mod. \ \sim;$
- ② $K_1^{\varepsilon,r}(A) = U^{\varepsilon,r}(A)/\sim and [u]_{\varepsilon,r}$ is the class of u mod. \sim .
 - $K_0^{\varepsilon,r}(A)$ is an abelian group for $[p, l]_{\varepsilon,r} + [p', l']_{\varepsilon,r} = [\operatorname{diag}(p, p'), l + l']_{\varepsilon,r};$
 - $K_1^{\varepsilon,r}(A)$ is an abelian semi-group for $[u]_{\varepsilon,r} + [v]_{\varepsilon,r} = [\operatorname{diag}(u,v)]_{\varepsilon,r}$;

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/4$ the homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,r}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A)$ (recall that $\mathsf{P}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}_{\infty}^{\varepsilon,r}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ and $h \in P^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, l_{k+l'})$ and $h(1) = \operatorname{diag}(q, l_{k+l})$.
- $u \sim v$ if there exists $h \in U^{\varepsilon,r}_{\infty}(C([0,1],A) \text{ s.t } h(0) = u \text{ and } h(1) = v.$

- $lackbox{0} \ K_0^{\varepsilon,r}(A) = \mathsf{P}^{\varepsilon,r}(A)/\sim and [p,l]_{\varepsilon,r} \ is \ the \ class \ of \ (p,l) \ mod. \ \sim;$
- ② $K_1^{\varepsilon,r}(A) = U^{\varepsilon,r}(A)/\sim and [u]_{\varepsilon,r}$ is the class of u mod. \sim .
 - $K_0^{\varepsilon,r}(A)$ is an abelian group for $[p, I]_{\varepsilon,r} + [p', I']_{\varepsilon,r} = [\operatorname{diag}(p, p'), I + I']_{\varepsilon,r};$
 - $K_1^{\varepsilon,r}(A)$ is an abelian semi-group for $[u]_{\varepsilon,r} + [v]_{\varepsilon,r} = [\operatorname{diag}(u,v)]_{\varepsilon,r}$;
 - if u is a ε -r-unitary, then $[u]_{3\varepsilon,2r} + [u^*]_{3\varepsilon,2r} = [1]_{3\varepsilon,2r}$.

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C}) \stackrel{\cong}{\to} \mathbb{Z}$$
; $[p,I]_{\varepsilon,r} \mapsto \operatorname{rank} \kappa(p) - I$; $K_1^{\varepsilon,r}(\mathbb{C}) \cong \{0\}$.

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C})\stackrel{\cong}{\to} \mathbb{Z}; [p,I]_{\varepsilon,r}\mapsto \operatorname{rank}\kappa(p)-I; K_1^{\varepsilon,r}(\mathbb{C})\cong \{0\}.$$

Definition

If A is a non unital filtered C^* -algebra and \tilde{A} the unitarization of A,

$$\bullet \ \textit{K}^{\varepsilon,\textit{r}}_0(\textit{A}) = \ker : \ \textit{K}^{\varepsilon,\textit{r}}_0(\tilde{\textit{A}}) \rightarrow \textit{K}^{\varepsilon,\textit{r}}_0(\mathbb{C}) \cong \mathbb{Z};$$

•
$$K_1^{\varepsilon,r}(A) = K_1^{\varepsilon,r}(\tilde{A});$$

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C})\stackrel{\cong}{\to} \mathbb{Z}; [p,I]_{\varepsilon,r}\mapsto \operatorname{rank}\kappa(p)-I; K_1^{\varepsilon,r}(\mathbb{C})\cong \{0\}.$$

Definition

If A is a non unital filtered C^* -algebra and \tilde{A} the unitarization of A,

$$\bullet \ \textit{K}^{\varepsilon,\textit{r}}_0(\textit{A}) = \ker : \ \textit{K}^{\varepsilon,\textit{r}}_0(\tilde{\textit{A}}) \rightarrow \textit{K}^{\varepsilon,\textit{r}}_0(\mathbb{C}) \cong \mathbb{Z};$$

•
$$K_1^{\varepsilon,r}(A) = K_1^{\varepsilon,r}(\tilde{A});$$

Definition

If A and B are filtered C^* -algebras with respect to $(A_r)_{r>0}$ and $(B_r)_{r>0}$, a homomorphism $f: A \to B$ is filtered if $f(A_r) \subset B_r$.

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C})\stackrel{\cong}{\to} \mathbb{Z}; [p,I]_{\varepsilon,r}\mapsto \operatorname{rank}\kappa(p)-I; K_1^{\varepsilon,r}(\mathbb{C})\cong \{0\}.$$

Definition

If A is a non unital filtered C^* -algebra and \tilde{A} the unitarization of A,

- $ullet K_0^{arepsilon,r}(A)=\ker:\,K_0^{arepsilon,r}(ilde{A}) o K_0^{arepsilon,r}(\mathbb{C})\cong\mathbb{Z};$
- $K_1^{\varepsilon,r}(A) = K_1^{\varepsilon,r}(\tilde{A});$

Definition

If A and B are filtered C^* -algebras with respect to $(A_r)_{r>0}$ and $(B_r)_{r>0}$, a homomorphism $f: A \to B$ is filtered if $f(A_r) \subset B_r$.

• A filtered $f: A \to B$ induces $f_*^{\varepsilon,r}: K_*^{\varepsilon,r}(A) \to K_*^{\varepsilon,r}(B)$;

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C})\stackrel{\cong}{\to} \mathbb{Z}; [p,I]_{\varepsilon,r}\mapsto \operatorname{rank}\kappa(p)-I; K_1^{\varepsilon,r}(\mathbb{C})\cong \{0\}.$$

Definition

If A is a non unital filtered C^* -algebra and \tilde{A} the unitarization of A,

- ullet $K_0^{arepsilon,r}(A)=\ker:\ K_0^{arepsilon,r}(ilde{A}) o K_0^{arepsilon,r}(\mathbb{C})\cong\mathbb{Z};$
- $K_1^{\varepsilon,r}(A) = K_1^{\varepsilon,r}(\tilde{A});$

Definition

If A and B are filtered C^* -algebras with respect to $(A_r)_{r>0}$ and $(B_r)_{r>0}$, a homomorphism $f: A \to B$ is filtered if $f(A_r) \subset B_r$.

- A filtered $f: A \to B$ induces $f_*^{\varepsilon,r}: K_*^{\varepsilon,r}(A) \to K_*^{\varepsilon,r}(B)$;
- $A \hookrightarrow A \otimes \mathcal{K}(H)$; $a \mapsto a \otimes e_{1,1}$ induces $K_*^{\varepsilon,r}(A) \stackrel{\cong}{\to} K_*^{\varepsilon,r}(A \otimes \mathcal{K}(\ell^2(\mathbb{N})))$.

For any filtered C^* -algebra A, $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, we have natural structure homomorphisms

- $\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(A) \longrightarrow K_0(A); [p,l]_{\varepsilon,r} \mapsto [\kappa(p)] [l_l];$
- $\iota_1^{\varepsilon,r}: K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,r} \mapsto [u];$
- $\bullet \ \iota_*^{\varepsilon,r} = \iota_0^{\varepsilon,r} \oplus \iota_1^{\varepsilon,r};$

For any filtered C^* -algebra A, $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, we have natural structure homomorphisms

- $\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(A) \longrightarrow K_0(A); [p,l]_{\varepsilon,r} \mapsto [\kappa(p)] [l_l];$
- $\iota_1^{\varepsilon,r}: K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,r} \mapsto [u];$
- $\bullet \ \iota_*^{\varepsilon,r} = \iota_0^{\varepsilon,r} \oplus \iota_1^{\varepsilon,r};$
- $\iota_0^{\varepsilon,\varepsilon',r,r'}: K_0^{\varepsilon,r}(A) \longrightarrow K_0^{\varepsilon',r'}(A); [p,l]_{\varepsilon,r} \mapsto [p,l]_{\varepsilon',r'};$
- $\iota_1^{\varepsilon,\varepsilon',r,r'}: K_1^{\varepsilon,r}(A) \longrightarrow K_1^{\varepsilon',r'}(A); [u]_{\varepsilon,r} \mapsto [u]_{\varepsilon',r'}.$
- $\bullet \ \iota_*^{\varepsilon,\varepsilon',r,r'} = \iota_0^{\varepsilon,\varepsilon',r,r'} \oplus \iota_1^{\varepsilon,\varepsilon',r,r'}.$

For any filtered C^* -algebra A, $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, we have natural structure homomorphisms

•
$$\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(A) \longrightarrow K_0(A); [p,l]_{\varepsilon,r} \mapsto [\kappa(p)] - [l_l];$$

•
$$\iota_1^{\varepsilon,r}: K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,r} \mapsto [u];$$

$$\bullet \ \iota_*^{\varepsilon,r} = \iota_0^{\varepsilon,r} \oplus \iota_1^{\varepsilon,r};$$

•
$$\iota_0^{\varepsilon,\varepsilon',r,r'}: K_0^{\varepsilon,r}(A) \longrightarrow K_0^{\varepsilon',r'}(A); [p,l]_{\varepsilon,r} \mapsto [p,l]_{\varepsilon',r'};$$

•
$$\iota_1^{\varepsilon,\varepsilon',r,r'}: K_1^{\varepsilon,r}(A) \longrightarrow K_1^{\varepsilon',r'}(A); [u]_{\varepsilon,r} \mapsto [u]_{\varepsilon',r'}.$$

$$\bullet \ \iota_*^{\varepsilon,\varepsilon',r,r'} = \iota_0^{\varepsilon,\varepsilon',r,r'} \oplus \iota_1^{\varepsilon,\varepsilon',r,r'}.$$

For any $\varepsilon \in (0, 1/4)$ and any projection p (resp. unitary u) in A, there exists r > 0 and q (resp. v) an ε -r-projection (resp. an ε -r-unitary) of A such that $\kappa(q)$ and p are closed and hence homotopic projections (resp. u et v are homotopic invertibles)

For any filtered C^* -algebra A, $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, we have natural structure homomorphisms

- $\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(A) \longrightarrow K_0(A); [p,l]_{\varepsilon,r} \mapsto [\kappa(p)] [l_l];$
- $\iota_1^{\varepsilon,r}: K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,r} \mapsto [u];$
- $\bullet \ \iota_*^{\varepsilon,r} = \iota_0^{\varepsilon,r} \oplus \iota_1^{\varepsilon,r};$
- $\iota_0^{\varepsilon,\varepsilon',r,r'}: K_0^{\varepsilon,r}(A) \longrightarrow K_0^{\varepsilon',r'}(A); [p,l]_{\varepsilon,r} \mapsto [p,l]_{\varepsilon',r'};$
- $\iota_1^{\varepsilon,\varepsilon',r,r'}: K_1^{\varepsilon,r}(A) \longrightarrow K_1^{\varepsilon',r'}(A); [u]_{\varepsilon,r} \mapsto [u]_{\varepsilon',r'}.$
- $\bullet \ \iota_*^{\varepsilon,\varepsilon',r,r'} = \iota_0^{\varepsilon,\varepsilon',r,r'} \oplus \iota_1^{\varepsilon,\varepsilon',r,r'}.$

For any $\varepsilon \in (0, 1/4)$ and any projection p (resp. unitary u) in A, there exists r > 0 and q (resp. v) an ε -r-projection (resp. an ε -r-unitary) of A such that $\kappa(q)$ and p are closed and hence homotopic projections (resp. u et v are homotopic invertibles)

Consequence

For every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exists r and x in $K_*^{\varepsilon, r}(A)$ such that $\iota_*^{\varepsilon, r}(x) = y$.

• Recall that if D is an elliptic differential operator on a compact manifold M, then for every $0 < \varepsilon < 1/4$ and r > 0, there exists $q_D^{\varepsilon,r}$ an ε -r-projection in $\mathcal{K}(L^2(M))$ s.t. Ind $D = [\kappa(q_D^{\varepsilon,r})] - [\begin{pmatrix} 0 & 0 \\ 0 & ld \end{pmatrix}]$;

12 / 26

- Recall that if D is an elliptic differential operator on a compact manifold M, then for every $0 < \varepsilon < 1/4$ and r > 0, there exists $q_D^{\varepsilon,r}$ an ε -r-projection in $\mathcal{K}(L^2(M))$ s.t. Ind $D = [\kappa(q_D^{\varepsilon,r})] [\begin{pmatrix} 0 & 0 \\ 0 & ld \end{pmatrix}]$;
- We can define in this way a controlled index $\operatorname{Ind}^{\varepsilon,r} D = [q_D^{\varepsilon,r}, 1]$ in $K_0^{\varepsilon,r}(\mathcal{K}(L^2(M)))$ such that $\operatorname{Ind} D = \iota_0^{\varepsilon,r}(\operatorname{Ind}^{\varepsilon,r} D)$;

- Recall that if D is an elliptic differential operator on a compact manifold M, then for every $0 < \varepsilon < 1/4$ and r > 0, there exists $q_D^{\varepsilon,r}$ an ε -r-projection in $\mathcal{K}(L^2(M))$ s.t. Ind $D = [\kappa(q_D^{\varepsilon,r})] [\begin{pmatrix} 0 & 0 \\ 0 & ld \end{pmatrix}]$;
- We can define in this way a controlled index $\operatorname{Ind}^{\varepsilon,r} D = [q_D^{\varepsilon,r}, 1]$ in $K_0^{\varepsilon,r}(\mathcal{K}(L^2(M)))$ such that $\operatorname{Ind} D = \iota_0^{\varepsilon,r}(\operatorname{Ind}^{\varepsilon,r} D)$;

More generally, we have:

- Recall that if D is an elliptic differential operator on a compact manifold M, then for every $0 < \varepsilon < 1/4$ and r > 0, there exists $q_D^{\varepsilon,r}$ an ε -r-projection in $\mathcal{K}(L^2(M))$ s.t. Ind $D = [\kappa(q_D^{\varepsilon,r})] [\begin{pmatrix} 0 & 0 \\ 0 & ld \end{pmatrix}]$;
- We can define in this way a controlled index $\operatorname{Ind}^{\varepsilon,r} D = [q_D^{\varepsilon,r}, 1]$ in $K_0^{\varepsilon,r}(\mathcal{K}(L^2(M)))$ such that $\operatorname{Ind} D = \iota_0^{\varepsilon,r}(\operatorname{Ind}^{\varepsilon,r} D)$;

More generally, we have:

Lemma

Let X be a cpct metric space, then for any $0 < \varepsilon < 1/4$ and any r > 0, there exists a controlled index map $\operatorname{Ind}_X^{\varepsilon,r}: K_0(X) \to K_0^{\varepsilon,r}(\mathcal{K}(L^2(X)))$ s.t

- Recall that if D is an elliptic differential operator on a compact manifold M, then for every $0 < \varepsilon < 1/4$ and r > 0, there exists $q_D^{\varepsilon,r}$ an ε -r-projection in $\mathcal{K}(L^2(M))$ s.t. Ind $D = [\kappa(q_D^{\varepsilon,r})] [\begin{pmatrix} 0 & 0 \\ 0 & ld \end{pmatrix}]$;
- We can define in this way a controlled index $\operatorname{Ind}^{\varepsilon,r} D = [q_D^{\varepsilon,r}, 1]$ in $K_0^{\varepsilon,r}(\mathcal{K}(L^2(M)))$ such that $\operatorname{Ind} D = \iota_0^{\varepsilon,r}(\operatorname{Ind}^{\varepsilon,r} D)$;

More generally, we have:

Lemma

Let X be a cpct metric space, then for any $0 < \varepsilon < 1/4$ and any r > 0, there exists a controlled index map $\operatorname{Ind}_X^{\varepsilon,r}: K_0(X) \to K_0^{\varepsilon,r}(\mathcal{K}(L^2(X)))$ s.t

- 2 the composition

$$K_0(X) \longrightarrow K_0^{\varepsilon,r}(\mathcal{K}(L^2(X))) \xrightarrow{\iota_0^{\varepsilon,r}} K_0(\mathcal{K}(L^2(X))) \cong \mathbb{Z}$$

is the index map.

Behaviour for small propagation

Theorem

Let X be a finite simplicial complex equipped with a metric. Then there exists $0 < \varepsilon_0 < 1/4$ such that the following holds:

For every $0 < \varepsilon < \varepsilon_0$, there exists $r_0 > 0$ such that for any $0 < r < r_0$ then

$$\operatorname{Ind}_X^{\varepsilon,r}: K_0(X) \to K_0^{\varepsilon,r}(\mathcal{K}(L^2(X)))$$

is an isomorphism.

Behaviour for small propagation

Theorem

Let X be a finite simplicial complex equipped with a metric. Then there exists $0 < \varepsilon_0 < 1/4$ such that the following holds:

For every $0 < \varepsilon < \varepsilon_0$, there exists $r_0 > 0$ such that for any $0 < r < r_0$ then

$$\operatorname{Ind}_X^{\varepsilon,r}: K_0(X) \to K_0^{\varepsilon,r}(\mathcal{K}(L^2(X)))$$

is an isomorphism.

• Under this identification the index map $\operatorname{Ind}_X^{\varepsilon,r}:K_0(X)\to \mathbb{Z}$ is given by

$$\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(\mathcal{K}(L^2(X))) \longrightarrow K_0(\mathcal{K}(L^2(X))); [p,I]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(p) - I.$$

Behaviour for small propagation

Theorem

Let X be a finite simplicial complex equipped with a metric. Then there exists $0 < \varepsilon_0 < 1/4$ such that the following holds:

For every $0 < \varepsilon < \varepsilon_0$, there exists $r_0 > 0$ such that for any $0 < r < r_0$ then

$$\operatorname{Ind}_X^{\varepsilon,r}: K_0(X) \to K_0^{\varepsilon,r}(\mathcal{K}(L^2(X)))$$

is an isomorphism.

• Under this identification the index map $\operatorname{Ind}_X^{\varepsilon,r}:K_0(X)\to \mathbb{Z}$ is given by

$$\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(\mathcal{K}(L^2(X))) \longrightarrow K_0(\mathcal{K}(L^2(X))); [p,I]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(p) - I.$$

• Question: Can we have estimations for r_0 ?

• We can also define higher indices valued in quantitative *K*-theory.

- We can also define higher indices valued in quantitative K-theory.
- Recall that the Rips complex $P_d(\Gamma)$ of order r is the set of probability measures on Γ with support of diameter less than s.

- We can also define higher indices valued in quantitative K-theory.
- Recall that the Rips complex $P_d(\Gamma)$ of order r is the set of probability measures on Γ with support of diameter less than s.
- There exists quantitative assembly maps

$$\mu_{\Gamma,A,*}^{arepsilon,r,d}: \mathit{KK}_*^{\Gamma}(\mathit{C}_0(P_d(\Gamma)),A) o \mathit{K}_*^{arepsilon,r}(A
times_{red} \Gamma)$$

such that $\iota_*^{\varepsilon,r} \circ \mu_{\Gamma,A,*}^{\varepsilon,r,d}$ is the Baum-Connes assembly maps (with $\iota_*^{\varepsilon,r} : K_*^{\varepsilon,r}(\bullet) \to K_*(\bullet)$)

- We can also define higher indices valued in quantitative K-theory.
- Recall that the Rips complex $P_d(\Gamma)$ of order r is the set of probability measures on Γ with support of diameter less than s.
- There exists quantitative assembly maps

$$\mu_{\Gamma,A,*}^{arepsilon,r,d}: \mathit{KK}_*^{\Gamma}(\mathit{C}_0(P_d(\Gamma)),A) o \mathit{K}_*^{arepsilon,r}(A
times_{red} \Gamma)$$

such that $\iota_*^{\varepsilon,r} \circ \mu_{\Gamma,A,*}^{\varepsilon,r,d}$ is the Baum-Connes assembly maps (with $\iota_*^{\varepsilon,r} : K_*^{\varepsilon,r}(\bullet) \to K_*(\bullet)$)

We can state a quantitative Baum-Connes conjecture.

- We can also define higher indices valued in quantitative K-theory.
- Recall that the Rips complex $P_d(\Gamma)$ of order r is the set of probability measures on Γ with support of diameter less than s.
- There exists quantitative assembly maps

$$\mu_{\Gamma,A,*}^{arepsilon,r,d}: \mathit{KK}_*^{\Gamma}(\mathit{C}_0(P_d(\Gamma)),A) o \mathit{K}_*^{arepsilon,r}(A
times_{red} \Gamma)$$

such that $\iota_*^{\varepsilon,r} \circ \mu_{\Gamma,A,*}^{\varepsilon,r,d}$ is the Baum-Connes assembly maps (with $\iota_*^{\varepsilon,r} : K_*^{\varepsilon,r}(\bullet) \to K_*(\bullet)$)

- We can state a quantitative Baum-Connes conjecture.
- This quantitative Baum-Connes conjecture is implied by the (usual) Baum-Connes conjecture with coefficients.

Recall that for every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exist r and x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = y$.

Recall that for every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exist r and x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = y$. How faithfull this approximation is?

Recall that for every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exist r and x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = y$. How faithfull this approximation is?

Lemma

For any ε small enough, any r > 0 and any x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = 0$ then there exists $r' \geqslant r$ such that $\iota_*^{\varepsilon,\lambda\varepsilon,r,r'}(x) = 0$ in $K_*^{\lambda\varepsilon,r'}(A)$ for some universal $\lambda \geqslant 1$.

Recall that for every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exist r and x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = y$. How faithfull this approximation is?

Lemma

For any ε small enough, any r > 0 and any x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = 0$ then there exists $r' \geqslant r$ such that $\iota_*^{\varepsilon,\lambda\varepsilon,r,r'}(x) = 0$ in $K_*^{\lambda\varepsilon,r'}(A)$ for some universal $\lambda \geqslant 1$.

Does r' depend on x?

Recall that for every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exist r and x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = y$. How faithfull this approximation is?

Lemma

For any ε small enough, any r > 0 and any x in $K_*^{\varepsilon,r}(A)$ s.t $\iota_*^{\varepsilon,r}(x) = 0$ then there exists $r' \geqslant r$ such that $\iota_*^{\varepsilon,\lambda\varepsilon,r,r'}(x) = 0$ in $K_*^{\lambda\varepsilon,r'}(A)$ for some universal $\lambda \geqslant 1$.

Does r' depend on x?

Definition (Persistent Approximation Property)

For A a filtered C*-algebra and positive numbers ε , ε' , r and r' such that $0 < \varepsilon \le \varepsilon' < 1/4$ and $0 < r \le r'$, define :

 $\mathcal{PA}_*(A, \varepsilon, \varepsilon', r, r')$: for any $x \in K_*^{\varepsilon, r}(A)$, then $\iota_*^{\varepsilon, r}(x) = 0$ in $K_*(A)$ implies that $\iota_*^{\varepsilon, \varepsilon', r, r'}(x) = 0$ in $K_*^{\varepsilon', r'}(A)$.

 $\mathcal{PA}_*(A, \varepsilon, \varepsilon', r, r')$: for any $x \in K_*^{\varepsilon, r}(A)$, then $\iota_*^{\varepsilon, r}(x) = 0$ in $K_*(A)$ implies that $\iota_*^{\varepsilon, \varepsilon', r, r'}(x) = 0$ in $K_*^{\varepsilon', r'}(A)$

is equivalent to:

 $\mathcal{PA}_*(A, \varepsilon, \varepsilon', r, r')$: for any $x \in K_*^{\varepsilon, r}(A)$, then $\iota_*^{\varepsilon, r}(x) = 0$ in $K_*(A)$ implies that $\iota_*^{\varepsilon, \varepsilon', r, r'}(x) = 0$ in $K_*^{\varepsilon', r'}(A)$

is equivalent to:

the restriction of $\iota_*^{\varepsilon',r'}: K_*^{\varepsilon',r'}(A) \longrightarrow K_*(A)$ to $\iota_*^{\varepsilon,\varepsilon',r,r'}(K_*^{\varepsilon,r}(A))$ is one-to-one.

 $\mathcal{PA}_*(A, \varepsilon, \varepsilon', r, r')$: for any $x \in K_*^{\varepsilon, r}(A)$, then $\iota_*^{\varepsilon, r}(x) = 0$ in $K_*(A)$ implies that $\iota_*^{\varepsilon, \varepsilon', r, r'}(x) = 0$ in $K_*^{\varepsilon', r'}(A)$

is equivalent to:

the restriction of $\iota_*^{\varepsilon',r'}: K_*^{\varepsilon',r'}(A) \longrightarrow K_*(A)$ to $\iota_*^{\varepsilon,\varepsilon',r,r'}(K_*^{\varepsilon,r}(A))$ is one-to-one.

Example

If $A = \mathcal{K}(\ell^2(\Sigma))$ for Σ discrete metric set.

- $\mathcal{P}A_0(A, \varepsilon, \varepsilon', r, r')$ holds if for any ε -r-projections q and q' in $\mathcal{K}(\ell^2(\Sigma)\otimes\mathcal{H})$ such that rang $\kappa(q)=\operatorname{rang}\kappa(q')$, then q and q' are homotopic ε' -r'-projections up to stabilization.
- $\mathcal{PA}_1(A, \varepsilon, \varepsilon', r, r')$ holds if for any two ε -r-unitaries (in $\mathcal{K}(\ell^2(\Sigma) \otimes \mathcal{H}) + \mathbb{C}Id$) are homotopic as ε' -r'-unitaries.

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem

Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action;

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action;

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \rtimes_{red} \Gamma, \varepsilon, \lambda \varepsilon, r, r')$ holds for any Γ - C^* -algebra A.

Definition (Universal example for proper actions)

A locally compact space Z is a universal example for proper actions of Γ if for any locally compact space X provided with a proper action of Γ , there exists $f: X \to Z$ continuous and equivariant, and any two such maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action;

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \rtimes_{red} \Gamma, \varepsilon, \lambda \varepsilon, r, r')$ holds for any Γ - C^* -algebra A.

Examples: Γ hyperbolic, Γ Haagerup with cocompact universal example, Γ fundamental group of a compact oriented 3-manifolds.

Observation : we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and

Observation: we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and (recall that $\kappa(q)$ is the spectral projection affiliated to q) $\iota_*^{\varepsilon,r}: K_*^{\varepsilon,r}(\mathcal{K}(\ell^2(\Gamma)) \to K_*(\mathcal{K}(\ell^2(\Gamma)) \cong \mathbb{Z}: [q,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(q) - l$.

Observation: we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and (recall that $\kappa(q)$ is the spectral projection affiliated to q) $\iota_*^{\varepsilon,r}: K_*^{\varepsilon,r}(\mathcal{K}(\ell^2(\Gamma)) \to K_*(\mathcal{K}(\ell^2(\Gamma))) \cong \mathbb{Z}: [q,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(q) - l$.

Corollary

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action.

Observation: we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and (recall that $\kappa(q)$ is the spectral projection affiliated to q) $\iota_*^{\varepsilon,r}: K_*^{\varepsilon,r}(\mathcal{K}(\ell^2(\Gamma)) \to K_*(\mathcal{K}(\ell^2(\Gamma))) \cong \mathbb{Z}: [q,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(q) - l$.

Corollary

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action.

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Gamma)), \varepsilon, \lambda \varepsilon, r, r')$ holds for any C^* -algebra A.

Observation: we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and (recall that $\kappa(q)$ is the spectral projection affiliated to q) $\iota_*^{\varepsilon,r}: K_*^{\varepsilon,r}(\mathcal{K}(\ell^2(\Gamma)) \to K_*(\mathcal{K}(\ell^2(\Gamma))) \cong \mathbb{Z}: [q,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(q) - l$.

Corollary

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action.

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Gamma)), \varepsilon, \lambda \varepsilon, r, r')$ holds for any C^* -algebra A.

The Gromov group does not satisfy the conclusion of the corollary.

Observation: we can identify $C_0(\Gamma) \rtimes \Gamma$ as a filtered C^* -algebra to $\mathcal{K}(\ell^2(\Gamma))$ and (recall that $\kappa(q)$ is the spectral projection affiliated to q) $\iota_*^{\varepsilon,r}: K_*^{\varepsilon,r}(\mathcal{K}(\ell^2(\Gamma)) \to K_*(\mathcal{K}(\ell^2(\Gamma))) \cong \mathbb{Z}: [q,l]_{\varepsilon,r} \mapsto \operatorname{rang} \kappa(q) - l$.

Corollary

Let Γ be a finitely generated discrete group. Assume that

- Γ satisfies the Baum-Connes conjecture with coefficients;
- Γ has a cocompact universal example for proper action.

Then for a universal $\lambda > 1$, any $\varepsilon \in (0, \frac{1}{4\lambda})$ and any r > 0, there exists r' > r such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Gamma)), \varepsilon, \lambda \varepsilon, r, r')$ holds for any C^* -algebra A.

- The Gromov group does not satisfy the conclusion of the corollary.
- This statement is purely geometric.

Let (Σ, d) be a proper discrete metric space;

• Σ has bounded geometry if for all r > 0, there exists an integer N such that any ball of radius r has cardinal less than N (example Γ finitely generated group equipped with the word metric);

Let (Σ, d) be a proper discrete metric space;

- Σ has bounded geometry if for all r > 0, there exists an integer N such that any ball of radius r has cardinal less than N (example Γ finitely generated group equipped with the word metric);
- Let (Σ', d') be another proper discrete metric space. A map $f: \Sigma \to \Sigma'$ is coarse if
 - ▶ f is proprer ;

Let (Σ, d) be a proper discrete metric space;

- Σ has bounded geometry if for all r > 0, there exists an integer N such that any ball of radius r has cardinal less than N (example Γ finitely generated group equipped with the word metric);
- Let (Σ', d') be another proper discrete metric space. A map $f: \Sigma \to \Sigma'$ is coarse if
 - f is proprer;
 - $ightharpoonup \forall r > 0, \exists s > 0 \text{ such that } d(x,y) < r \Rightarrow d'(f(x),f(y)) < s;$

Let (Σ, d) be a proper discrete metric space;

- Σ has bounded geometry if for all r > 0, there exists an integer N such that any ball of radius r has cardinal less than N (example Γ finitely generated group equipped with the word metric);
- Let (Σ', d') be another proper discrete metric space. A map $f: \Sigma \to \Sigma'$ is coarse if
 - f is proprer;
 - ▶ $\forall r > 0$, $\exists s > 0$ such that $d(x, y) < r \Rightarrow d'(f(x), f(y)) < s$;
- A coarse map $f: \Sigma \to \Sigma'$ is a coarse equivalence if there is a coarse map $g: \Sigma' \to \Sigma$ and M > 0 such that $d(f \circ g(y), y) < M$ and $d(g \circ f(x), x) < M \quad \forall x \in X$ and $\forall y \in Y$.

The geometrical Persistent Approximation Property

Definition

Let (Σ, d) a proper discrete metric space. We say that Σ satisfies the geometrical Persistent Approximation Property if there exists $\lambda > 1$ such that for any $0 < \varepsilon \le \frac{1}{4\lambda}$ and any r > 0, there exists r' > r and $\varepsilon' \in [\varepsilon, 1/4)$ such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Sigma)), \varepsilon, \varepsilon', r, r')$ holds for any C^* -algebra A.

The geometrical Persistent Approximation Property

Definition

Let (Σ, d) a proper discrete metric space. We say that Σ satisfies the geometrical Persistent Approximation Property if there exists $\lambda > 1$ such that for any $0 < \varepsilon \le \frac{1}{4\lambda}$ and any r > 0, there exists r' > r and $\varepsilon' \in [\varepsilon, 1/4)$ such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Sigma)), \varepsilon, \varepsilon', r, r')$ holds for any C^* -algebra A.

Remark

The geometrical Persistent Approximation Property is invariant under coarse equivalence.

The geometrical Persistent Approximation Property

Definition

Let (Σ, d) a proper discrete metric space. We say that Σ satisfies the geometrical Persistent Approximation Property if there exists $\lambda > 1$ such that for any $0 < \varepsilon \leqslant \frac{1}{4\lambda}$ and any r > 0, there exists r' > r and $\varepsilon' \in [\varepsilon, 1/4)$ such that $\mathcal{PA}_*(A \otimes \mathcal{K}(\ell^2(\Sigma)), \varepsilon, \varepsilon', r, r')$ holds for any C^* -algebra A.

Remark

The geometrical Persistent Approximation Property is invariant under coarse equivalence.

Example

If Γ (finitely generated) satisfies the Baum-Connes conjecture with coefficients and admits a cocompact universal example for proper action, then $|\Gamma|$ satisfies the geometrical Persistent Approximation Property.

Let (Σ, d) be a discrete metric space with bounded geometry.

Let (Σ, d) be a discrete metric space with bounded geometry. Recall that the Rips complex of degree r is the set $P_r(\Sigma)$ of probability measures on Σ with support of diameter less than r (notice that $P_r(\Sigma) \subset P_{r'}(\Sigma)$ if $r \leqslant r'$).

Let (Σ, d) be a discrete metric space with bounded geometry. Recall that the Rips complex of degree r is the set $P_r(\Sigma)$ of probability measures on Σ with support of diameter less than r (notice that $P_r(\Sigma) \subset P_{r'}(\Sigma)$ if $r \leqslant r'$).

Definition

 Σ has the uniform coarse contractibility property if for any r > 0, there exists r' > r such that every compact subset in $P_r(\Sigma)$ lies in a contractible compact subset of $P_{r'}(\Sigma)$.

Let (Σ, d) be a discrete metric space with bounded geometry. Recall that the Rips complex of degree r is the set $P_r(\Sigma)$ of probability measures on Σ with support of diameter less than r (notice that $P_r(\Sigma) \subset P_{r'}(\Sigma)$ if $r \leqslant r'$).

Definition

 Σ has the uniform coarse contractibility property if for any r > 0, there exists r' > r such that every compact subset in $P_r(\Sigma)$ lies in a contractible compact subset of $P_{r'}(\Sigma)$.

Example : Σ Gromov hyperbolic.

Coarse embedding in a Hilbert space

Definition

 Σ coarsely embeds in a Hilbert space \mathcal{H} if there exists $f: \Sigma \to \mathcal{H}$ s.t: for all R > 0, there exists S > 0 s.t $d(x,y) < R \Rightarrow ||f(x) - f(y)|| < S$ and $||f(x) - f(y)|| < R \Rightarrow d(x,y) < S$.

Coarse embedding in a Hilbert space

Definition

 Σ coarsely embeds in a Hilbert space \mathcal{H} if there exists $f: \Sigma \to \mathcal{H}$ s.t: for all R > 0, there exists S > 0 s.t $d(x,y) < R \Rightarrow ||f(x) - f(y)|| < S$ and $||f(x) - f(y)|| < R \Rightarrow d(x,y) < S$.

Examples: Σ Gromov hyperbolic, Γ amenable group, linear...

Coarse embedding in a Hilbert space

Definition

 Σ coarsely embeds in a Hilbert space \mathcal{H} if there exists $f: \Sigma \to \mathcal{H}$ s.t: for all R > 0, there exists S > 0 s.t $d(x,y) < R \Rightarrow ||f(x) - f(y)|| < S$ and $||f(x) - f(y)|| < R \Rightarrow d(x,y) < S$.

Examples: Σ Gromov hyperbolic, Γ amenable group, linear...

Theorem

Let Σ be a discrete metric space with bounded geometry. Assume that

- Σ coarsely embeds in a Hilbert space;
- \bullet Σ satisfies the uniform coarse contractibility property.

Then Σ satisfies the geometrical Persistent Approximation Property.

Control indices with coefficients

H. Oyono Oyono (Université de Lorraine)

• Let X be a cpct metric space, and let A be a C^* -algebra. Then for any $0 < \varepsilon < 1/4$ and any r > 0, the control index map admits a version with coefficient

$$\mathsf{Ind}_{X,\mathcal{A}}^{arepsilon,\mathit{r}}: \mathit{KK}_*(\mathit{C}(X),\mathcal{A}) o \mathit{K}_*^{arepsilon,\mathit{r}}(\mathcal{K}(\mathcal{A} \otimes \mathit{L}^2(X)))$$

compatible with the maps $\iota_*^{\varepsilon,\varepsilon',r,r'}$ and such that the composition

$$KK_*(C(X), A) \longrightarrow K_*^{\varepsilon, r}(A \otimes \mathcal{K}(L^2(X))) \xrightarrow{\iota_*^{\varepsilon, r}} K_*(A \otimes \mathcal{K}(L^2(X))) \cong K_*(A)$$
 is induced by $X \mapsto \{*\}.$

Control indices with coefficients

• Let X be a cpct metric space, and let A be a C^* -algebra. Then for any $0 < \varepsilon < 1/4$ and any r > 0, the control index map admits a version with coefficient

$$\mathsf{Ind}_{X,\mathcal{A}}^{arepsilon,\mathit{r}}: \mathit{KK}_*(\mathit{C}(X),\mathcal{A}) o \mathit{K}_*^{arepsilon,\mathit{r}}(\mathcal{K}(\mathcal{A} \otimes \mathit{L}^2(X)))$$

compatible with the maps $\iota_*^{\varepsilon,\varepsilon',r,r'}$ and such that the composition

$$KK_*(C(X), A) \longrightarrow K_*^{\varepsilon, r}(A \otimes \mathcal{K}(L^2(X))) \xrightarrow{\iota_*^{\varepsilon, r}} K_*(A \otimes \mathcal{K}(L^2(X))) \cong K_*(A)$$
 is induced by $X \mapsto \{*\}.$

• If Σ be a be discrete metric space with bounded geometry and X a compact subset of $P_d(\Sigma)$, then we have an inclusion $\mathcal{K}(L^2(X)) \hookrightarrow \mathcal{K}(L^2(P_d(\Sigma)))$ with propagation increasing controlled independently on X (indeed $r \mapsto r + cst$).

Control indices with coefficients

• Let X be a cpct metric space, and let A be a C^* -algebra. Then for any $0 < \varepsilon < 1/4$ and any r > 0, the control index map admits a version with coefficient

$$\mathsf{Ind}_{X,A}^{arepsilon,r}: \mathit{KK}_*(\mathit{C}(X),A) o \mathit{K}_*^{arepsilon,r}(\mathcal{K}(A \!\otimes\! L^2(X)))$$

compatible with the maps $\iota_*^{\varepsilon,\varepsilon',r,r'}$ and such that the composition

$$KK_*(C(X), A) \longrightarrow K_*^{\varepsilon, r}(A \otimes \mathcal{K}(L^2(X))) \xrightarrow{\iota_*^{\varepsilon, r}} K_*(A \otimes \mathcal{K}(L^2(X))) \cong K_*(A)$$
 is induced by $X \mapsto \{*\}.$

- If Σ be a be discrete metric space with bounded geometry and X a compact subset of $P_d(\Sigma)$, then we have an inclusion $\mathcal{K}(L^2(X)) \hookrightarrow \mathcal{K}(L^2(P_d(\Sigma)))$ with propagation increasing controlled independently on X (indeed $r \mapsto r + cst$).
- Σ and $P_d(\Sigma)$ are coarse equivalent, hence there is an isomorphism $\mathcal{K}(L^2(P_d(\Sigma))) \cong \mathcal{K}(\ell^2(\Sigma))$ with propagation increasing controlled.

Compactly supported coarse assembly maps

Let Σ be a discrete metric space with bounded geometry, let A be a C^* -algebra. Let us set $A_{\Sigma} = A \otimes \mathcal{K}(\ell^2(\Sigma))$.

Compactly supported coarse assembly maps

Let Σ be a discrete metric space with bounded geometry, let A be a C^* -algebra. Let us set $A_{\Sigma} = A \otimes \mathcal{K}(\ell^2(\Sigma))$.

• $\operatorname{Ind}_{X,A}^{\varepsilon,r}: KK_*(C(X),A) \to K_*^{\varepsilon,r}(\mathcal{K}(A\otimes L^2(X))),$ $A\otimes \mathcal{K}(L^2(X)) \hookrightarrow \mathcal{K}(A\otimes L^2(P_d(\Sigma)))$ and $\mathcal{K}(A\otimes L^2(P_d(\Sigma))) \cong \mathcal{K}(A\otimes \ell^2(\Sigma))$ give rise to a bunch of compactly supported coarse assembly maps:

$$\mu_{\Sigma,A,*}^{\varepsilon,r,s}$$
; $\lim_{X} KK_{*}(C(X),A) \longrightarrow K_{*}^{\varepsilon,r}(A_{\Sigma})$,

where in the limit, X runs through compact subspace of the Rips complex $P_s(\Sigma)$, for $r \ge r_{\Sigma,d,\varepsilon}$, with $r_{\Sigma,d,\varepsilon}$ decreasing in ε and increasing in d;

Compactly supported coarse assembly maps

Let Σ be a discrete metric space with bounded geometry, let A be a C^* -algebra. Let us set $A_{\Sigma} = A \otimes \mathcal{K}(\ell^2(\Sigma))$.

• $\operatorname{Ind}_{X,A}^{\varepsilon,r}: KK_*(C(X),A) \to K_*^{\varepsilon,r}(\mathcal{K}(A\otimes L^2(X))),$ $A\otimes \mathcal{K}(L^2(X)) \hookrightarrow \mathcal{K}(A\otimes L^2(P_d(\Sigma)))$ and $\mathcal{K}(A\otimes L^2(P_d(\Sigma))) \cong \mathcal{K}(A\otimes \ell^2(\Sigma))$ give rise to a bunch of compactly supported coarse assembly maps:

$$\mu_{\Sigma,A,*}^{\varepsilon,r,s}$$
; $\lim_{X} KK_{*}(C(X),A) \longrightarrow K_{*}^{\varepsilon,r}(A_{\Sigma})$,

where in the limit, X runs through compact subspace of the Rips complex $P_s(\Sigma)$, for $r \ge r_{\Sigma,d,\varepsilon}$, with $r_{\Sigma,d,\varepsilon}$ decreasing in ε and increasing in d;

• These maps are compatible with inclusions $P_s(\Sigma) \hookrightarrow P_{s'}(\Sigma)$ and structure map $\iota_*^{\varepsilon,\varepsilon',r,r'}: K_*^{\varepsilon,r}(A_{\Sigma}) \to K_*^{\varepsilon',r'}(A_{\Sigma})$.

For Σ discrete metric space with bounded geometry, and A a C^* -alg., we set $K_*(P_d(\Sigma), A) = \lim_{X \subset P_d(\Sigma) \text{ cpct }} KK_*(C(X), A)$.

For Σ discrete metric space with bounded geometry, and A a C^* -alg., we set $K_*(P_d(\Sigma), A) = \lim_{X \subset P_d(\Sigma) \text{ cpct }} KK_*(C(X), A)$. Consider

 $Ql_{\Sigma,A,*}(d,d',r,\varepsilon)$ for any element x in $K_*(P_d(\Sigma),A)$, then $\mu_{\Sigma,A,*}^{\varepsilon,r,d}(x)=0$ in $K_*^{\varepsilon,r}(A_{\Sigma})$ implies that $q_{d,d'}^*(x)=0$ in $K_*(P_{d'}(\Sigma),A)$.

For Σ discrete metric space with bounded geometry, and A a C^* -alg., we set $K_*(P_d(\Sigma), A) = \lim_{X \subset P_d(\Sigma) \text{ cpct }} KK_*(C(X), A)$. Consider

 $Ql_{\Sigma,A,*}(d,d',r,\varepsilon)$ for any element x in $K_*(P_d(\Sigma),A)$, then $\mu_{\Sigma,A,*}^{\varepsilon,r,d}(x)=0$ in $K_*^{\varepsilon,r}(A_{\Sigma})$ implies that $q_{d,d'}^*(x)=0$ in $K_*(P_{d'}(\Sigma),A)$.

 $QS_{\Sigma,A,*}(d,r,r',\varepsilon,\varepsilon')$ for every y in $K_*^{\varepsilon',r'}(A_{\Sigma})$, there exists an element x in $K_*(P_d(\Sigma),A)$ such that $\mu_{\Sigma,A,*}^{\varepsilon,r,d}(x) = \iota_*^{\varepsilon',\varepsilon,r',r}(y)$.

For Σ discrete metric space with bounded geometry, and A a C^* -alg., we set $K_*(P_d(\Sigma), A) = \lim_{X \subset P_d(\Sigma) \text{ cpct }} KK_*(C(X), A)$. Consider

 $QI_{\Sigma,A,*}(d,d',r,\varepsilon)$ for any element x in $K_*(P_d(\Sigma),A)$, then $\mu_{\Sigma,A,*}^{\varepsilon,r,d}(x)=0$ in $K_*^{\varepsilon,r}(A_{\Sigma})$ implies that $q_{d,d'}^*(x)=0$ in $K_*(P_{d'}(\Sigma),A)$.

 $QS_{\Sigma,A,*}(d,r,r',\varepsilon,\varepsilon')$ for every y in $K_*^{\varepsilon',r'}(A_{\Sigma})$, there exists an element x in $K_*(P_d(\Sigma),A)$ such that $\mu_{\Sigma,A,*}^{\varepsilon,r,d}(x)=\iota_*^{\varepsilon',\varepsilon,r',r}(y)$.

Theorem

If Σ uniformaly embeds into a Hilbert space.

- Then for any positive numbers d, ε and $r \geqslant r_{\Sigma,d,\varepsilon}$ with $\varepsilon < 1/4$ and $r \geqslant r_{\Sigma,d,\varepsilon}$, there exists a positive number d' with $d' \geqslant d$ such that $Ql_{\Sigma,A}(d,d',r,\varepsilon)$ is satisfied for every C^* -algebra A;
- ② For some $\lambda > 1$ and for any positive numbers ε and r' with $\varepsilon < \frac{1}{4\lambda}$, there exist positive numbers d and r with $r_{\Sigma,d,\varepsilon} \leqslant r$ and $r' \leqslant r$ such that $QS_{\Sigma,A}(d,r,r',\lambda\varepsilon,\varepsilon)$ is satisfied for every C^* -algebra A.

Application to Novikov conjecture

Theorem

Let Σ be a be discrete metric space with bounded geometry. Assume that the following assertions hold:

- of or any d, ε and $r \geqslant r_{\Sigma,d,\varepsilon}$ with $\varepsilon < 1/4$ and $r \geqslant r_{\Sigma,d,\varepsilon}$, there exists d' with $d' \geqslant d$ such that $QI_{F,\mathbb{C}}(d,d',r,\varepsilon)$ is satisfied for any finite subset F of Σ ;
- Por any ε and r' with $\varepsilon < \frac{1}{4}$, there exist positive numbers d, ε' and r with $r_{\Sigma,d,\varepsilon} \leqslant r$, $r' \leqslant r$ and $\varepsilon < \varepsilon' < \frac{1}{4}$, such that $QS_{F,\mathbb{C}}(d,r,r',\varepsilon',\varepsilon)$ is satisfied for every for any finite subset F of Σ ;

Then Σ satisfies the coarse Baum-Connes conjecture.

Application to Novikov conjecture

Theorem

Let Σ be a be discrete metric space with bounded geometry. Assume that the following assertions hold:

- of or any d, ε and $r \geqslant r_{\Sigma,d,\varepsilon}$ with $\varepsilon < 1/4$ and $r \geqslant r_{\Sigma,d,\varepsilon}$, there exists d' with $d' \geqslant d$ such that $QI_{F,\mathbb{C}}(d,d',r,\varepsilon)$ is satisfied for any finite subset F of Σ ;
- Por any ε and r' with $\varepsilon < \frac{1}{4}$, there exist positive numbers d, ε' and r with $r_{\Sigma,d,\varepsilon} \leqslant r$, $r' \leqslant r$ and $\varepsilon < \varepsilon' < \frac{1}{4}$, such that $QS_{F,\mathbb{C}}(d,r,r',\varepsilon',\varepsilon)$ is satisfied for every for any finite subset F of Σ ;

Then Σ satisfies the coarse Baum-Connes conjecture.

In particular, if $\Sigma = \Gamma$ is a finitely generated group, then and under the assumptions of the theorem, Γ satisfies the Novikov conjecture.